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Executive Summary

As proposed in the Computerized Law School Admission Test (LSAT) Research Agenda, the Law School
Admission Council (LSAC) is currently investigating the advisability and feasibility of developing a
computerized version of the LSAT. An important component of this research effort is the development of
new dimensionality estimation procedures. For the purposes of this report, the dimensions of a test may be
thought of as the number of statistically detectable skills that the test is measuring. A dimensionality analysis
involves determining the number of dimensions (or skills) being measured by the test, the nature of these
dimensions, and the degree to which the dimensions are correlated.

The current LSAT has been reliably estimated by several studies to have two dominant dimensions. One
of these dimensions is associated with the analytical reasoning (AR) items, while the other is associated with
the combination of logical reasoning (LR) and reading comprehension (RC) items. However, previous analyses
have also demonstrated other more minor dimensions, for example, the item sets corresponding to the different
AR and RC passages. Moreover, in a computerized adaptive test (CAT) setting, new minor dimensions may be
introduced because of the new medium of administering the test or because of the adaptive way in which
the items are administered. The influence of such minor dimensions are strictly controlled on the current
LSAT so that no test takers are unfairly advantaged or disadvantaged. To ensure the continued control over
these minor dimensions, new dimensionality estimation techniques should be developed for CAT data so that
we can continue to monitor the influence of such dimensions in a CAT setting.

The purpose of the current paper is to develop a new more powerful dimensionality estimation
technique. The new technique expands upon previously developed techniques that could only determine
whether two items were measuring the same dimension by also measuring the degree of dimensional
similarity between two items.

Through analysis of simulated data, the new technique is shown to be able to estimate dimensional
similarity between items that previous techniques were unable to measure. Perhaps the most striking results
with the new technique were demonstrated in an analysis of LSAT RC data. In this analysis the new
technique not only resolved the conflicting results from two previous analyses, it also yielded a clear and
compelling explanation as to why the conflict had occurred.

In conclusion, the new technique introduced in this paper shows much promise as a potentially
powerful dimensionality estimation tool.

Abstract

Several nonparametric dimensionality assessment tools have demonstrated the usefulness of item pair
conditional covariances as building blocks for investigating multidimensional test structure. Recently, Zhang
and Stout (1999) have related the structural properties of conditional covariances in a generalized
compensatory framework to a test item geometry model analogous to that developed by Reckase (1985) for
the multidimensional logistic item response function. This model represents an item's measurement
direction in terms of the multidimensional ability composite best measured (in terms of information) by the
item. In this preliminary study we demonstrate how such directional representations can be reconstructed on
the basis of each item's individual pattern of conditional covariances with all of the other items on the test. A
proximity measure for item pairs based on these patterns is derived, and circular and spherical
multidimensional scaling techniques are shown to provide a method by which the unique measurement
directions of items might be recovered and represented. Several real and simulated data analyses suggest
that the approach may be a useful tool for investigating and describing the dimensional structure of tests.

Introduction

As most educational and psychological tests are recognized as being at least to some degree
multidimensional, the development of accurate dimensionality assessment tools has become increasingly
important. These tools serve the purposes both of identifying when test multidimensionality exists and of
providing a practical, useful description of multidimensional test structure when it is known (or can be
shown) to exist. This latter purpose can have important implications for several aspects of testing. Perhaps
the most immediate is its ability to suggest an interpretation of the dimensions contributing to test
performance. This is especially critical in cases where the practitioner may be uncertain as to whether such
dimensions are intended to be measured by the test.. For conditions where the test is intended to be
multidimensional, an understanding of its multidimensional structure may also be important to the test item
writer who can be made sensitive to how various types of items measure particular dimensions. For the
psychometrician interested in item response theory (IRT) applications, test data analysis often depends on a
unidimensionality assumption that, if not satisfied for the test as a whole, may nevertheless be satisfied by
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particular subsets of test items. The ability to recognize subgroups of items within a test as dimensionally
homogeneous may permit use of IRT for those item subsets.

Most important from the perspective of the Law School Admission Council (LSAC), dimensionality
assessment also becomes crucial in the context of computerized adaptive testing (CAT) when the pool of test
items is known to measure more than one dimension. Because in CAT each examinee is administered a
limited number of potentially unique test items, it is crucial from a test fairness perspective that the administered
items adequately measure each of the intended abilities across examinees to the same extent. Thus, item
selection algorithms may need to be sensitive in part to the degree that items measure each ability dimension.
Because LSAC is in the midst of a five-year program to assess the feasibility and advisability of developing a
computerized version of the Law School Admission Test (LSAT) (Pashley, 1995,1997), the development of
improved dimensionality estimation procedures at LSAC is currently of particularly special interest.

Among the dimensionality assessment methods that have been previously developed is a class of
methods that are characterized as parametric. Parametric methods explore multidimensionality by assuming
a specific model for the item response function, a function that in the context of multidimensionality may be
based on more than one ability dimension. Examples of parametric techniques include the application of
linear factor analysis to a tetrachoric correlation matrix (Knol & Berger, 1991; Lord, 1980) and nonlinear
factor analysis (McDonald, 1967). With these methods, an interpretation of multidimensional test structure is
derived from the estimated factor loadings of the model. That is, items having a similar pattern in their
loadings on the factors can be thought of as dimensionally similar.

One natural limitation to parametric methods is their strong modeling assumptions. In an attempt to
relax these assumptions, several more recently developed non-parametric assessment tools emphasize the
use of item pair conditional covariances (given a test composite score) as building blocks for investigating
multidimensional test structure (see Stout, Habing, Douglas, Kim, Roussos & Zhang, 1996). The relevance of
conditional covariances to dimensionality assessment is made especially apparent by recognizing the close
association between local independence (LI) and dimensionality (Stout, 1990), and that in virtually all
practical cases conditional covariances are sufficient for assessing LI (McDonald, 1985). One realization of
this is Stout's DIMTEST procedure (Stout, 1987) for testing essential unidimensionality, which ultimately
may be seen as testing for positive conditional covariances within an assessment subtest of items given an
appropriately chosen partitioning subtest. Another example is Roussos' (1992) HCA/CCPROX, which sorts
and identifies dimensionally similar item subsets by performing a hierarchical cluster analysis using a
conditional-covariance-based proximity measure between items. Similarly, the procedure DETECT (Kim,
1994; Zhang & Stout, 1999) optimizes an index defined using conditional covariances to determine both the
"amount" of multidimensionality present in the test and the number of dominant dimensions, as well as the
items that measure those dimensions. Both HCA/CCPROX and DETECT might be thought of as methods
for searching for patterns in the item pair conditional covariance matrix indicative of some degree of item
level simple structure.

Recently Zhang and Stout (1999) have related the theoretical structural properties of conditional
covariances given a latent test composite to a test item geometry model analogous to that developed by
Reckase (see Reckase & McKinley, 1991). Adopting such a representation can in itself be a useful method for
investigating and describing multidimensional test structure, as has been demonstrated with Reckase's
multidimensional logistic model (Reckase, 1985, 1997). It also provides a valuable framework in which an
interpretation of other dimensionality analysis tools, such as DIMTEST, HCA/CCPROX, and DETECT, may
be enhanced. Zhang and Stout's (1999) theoretical results importantly suggest that well-estimated
conditional covariances may in themselves, and apart from adoption of a particular multidimensional item
response model, provide a basis for such a geometric description. In this paper, we more specifically
investigate the utility of an item's pattern of conditional covariances with other itemsas an indicator of its
underlying geometric structure. We begin by introducing a measure of dissimilarity between two items
based on the correspondence of their conditional covariance patterns. Then, using this measure, we propose
a class of multidimensional scaling techniques to construct an item-level geometric representation of their
dimensional structure. We illustrate the potential of this method using several simulated data sets and then
investigate the dimensional structure of two sections of the LSAT, the analytical reasoning (AR) and reading
comprehension (RC) sections.

Representation of a Generalized Compensatory Model

For many tests that are multidimensional, it may be reasonable to assume that the skills or abilities being
measured interact in a compensatory way. Qualitatively, a multidimensional compensatory model refers to
one in which a relative weakness in one ability can be compensated for by relative strength in another ability.
For example, on a math test an examinee lacking in geometry ability may nevertheless be able to answer a
question measuring both geometry and algebra skills correctly because of high algebra ability. In this case
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high algebra ability would be considered to compensate for insufficient geometry ability. Multidimensional
compensatory models may be especially relevant for tests where different strategies can be brought to bear
in solving a test item. This may occur, for example, in a math test where an individual item might be solved
by following either a geometric or algebraic strategy.

Zhang and Stout (1999) consider the case of a generalized compensatory model (GCM) in which all item
response functions have the general form:

P,(6)= H,(a 0) , i = 1, 2, ..., n

where ai = (ail, a,,,) is a discrimination parameter vector, and Hi(x) is a nondecreasing function with

Hi (x) 0 and Hi (x)Hi (y) not being 0 identically, for i, j = 1, 2, ..., n.

Specific parametric multidimensional models may be defined by varying the nature of the item response
function in the above representation. Two common examples are the multidimensional logistic model of
Reckase (1985) and the multidimensional normal ogive model discussed by McDonald (1985), where the His
are based on the logistic and cumulative normal distribution functions, respectively. In the case of no
guessing, Reckase's model can be formalized as follows:

exP(I kr a ike k +di)P,(0) 1, i = 1, 2, ..., n
1+exp(1 k +d,

where d is a multidimensional difficulty parameter such that larger values of d correspond to easier items,
and D is the number of ability dimensions.

An example of an item vector representation that can be used in conjunction with a GCM is shown in
Figure 1(a) for a set of 4 two-dimensional items. In keeping with the generalized nature of the GCM, the
representation here is constructed as if independent of the functional form of H, and depends only on the a;
for each individual item. In this case the a, parameters are represented both by the direction of the vector and
its length. Specifically, the angle between each item vector and the 01-axis corresponds to arctan

while the length of the vector is proportional to

ail

11(a, 2 + a22 ).

It will be useful to think of the direction of this vector as also representing the measurement direction of the
item, as it corresponds to the unique direction in the latent space that maximizes multidimensional
information (Zhang & Stout, 1999). Thus, items that measure a similar composite of dimensions will have
similar measurement directions, and their vectors will lie in close angular proximity even though they may
differ in terms of their lengths, or discriminating power. For the example in Figure 1(a), Items 1 and 2, which
are oriented in very similar directions, also measure a similar dimensional composite, while Items 1 and 3
point in different directions and, thus, measure more distinct dimensional composites. Also, Item 1 is more
discriminating than Item 2 with respect to their common measurement direction as it has a greater length.

Reckase (1985) added a representation of item difficulty based on the multidimensional item difficulty
parameter d incorporated into the multidimensional logistic model. In this context, the tail of item i's vector
is positioned d, units from the origin in the direction of the item vector. Reckase (1985) shows that the
position of the tail also corresponds to the location of the .5 probability contour of the item. Consequently,
items that are more difficult will have tails positioned in the first quadrant while items that are easier will
have tails located in the third quadrant. In Figure 1(b) the difficulty representation has been added, so that
the order of difficulty of the items in terms of their multidimensional item difficulty is Item 1, followed by
Items 3, 2, and 4, with Item 4 being the most difficult.

7
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(a.) Representation of item discrimination direction
and magnitude.

FIGURE 1. Examples of item vector representations

(b.) Representation of both difficulty level magnitude as
well as discrimination direction and magnitude.

Within this representation, it is also useful to refer to a particular dimensional composite measured by a
collection of multidimensional items, or an entire test. Specifically, the latent ability composite associated
with a particular test (or subtest) composite score Y will be denoted as 0, . The measurement direction in
0-space for this composite is defined as the direction for which Y provides the maximum expected
information (Zhang & Stout, 1999). The direction in the latent space in which O. is measured is determined
by the weights 0,, attached to the different dimensions. For example, in the case of two dimensions, 01 and
02, an equally weighted composite (0, = (01 + 02)12) results in its measurement direction being exactly
halfway between the 01 and 02 axes (i.e., at 45°).

Roughly speaking, the direction in which eyis measured might be thought of as some sort of an average
direction based on the measurement directions of the items that comprise Y and in this sense is conceptually
similar to Wang's (1988) notion of a reference composite. For details on defining multidimensional item or
test information, or how the former combine to define the latter, see Zhang and Stout (1999). Most relevant
for the purpose of this paper is the fundamental relation between the directions and lengths of the item
vectors and their corresponding item-pair conditional covariances given the focus of the next section. In
our attempt to represent test structure through multidimensional scaling, it is ultimately these generalized
compensatory model-based directions that we are attempting to recover.

Conditional Covariances and the GCM

As described above, associated with each item is a direction in the 0-space defined by its ai vector, and
associated with each test is an ability composite denoted by 0,,. We now consider the general case of a
composite 0,,, where a = (a1, a2, ap) , D is the number of dimensions, and the ct,s denote the angles of the
composite with each of the dimensions. In general, the cris define how the different 0, axes are weighted in
the OQ composite with smaller values indicating greater weights. The following theorem provides a link
between the conditional-covariance behavior of a pair of items and the angular difference in their
measurement directions relative to a prescribed composite O,, .

BEST COPY AVAILABLE.
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Theorem (Zhang, 1996; Zhang & Stout, 1999): If Co N(0, ID), D 2, and 0 = aT 0 is any fixed composite, then

Cov(aTOr al. 0 10a) =
at 01

a

of

a

cos )34, (1)

sin /3, sine cos 13 , (2)

where at and of are the projections of the discrimination parameter vectors ai and 111 on the space

11,-,L del {y =(yi 112 )T : aT y= 01, respectively;

/3 .. is the angle between a and a J.L. 7t), 1 5 i 5w, and 13,, f are the angles between ai and a and ajand a,
respectively, (0 5 i,p 5_ Jr), i, J = 1, 2, ..., n.
If further, neither a; nor ai is in the same direction as a, then for all 0

cov(x ,x e= )

Moreover, the magnitude of Cov(X , X 0 = 0)

is a strictly decreasing function of 13 ford e [0, ft] when

>04/34<n/2;
=0,if/3,i=n/2;
<04,34 >n/2.

a Isin /9, and al sin 131 are fixed and D-5 2.

Further, Zhang and Stout (1999) conjecture that moving an item's vector away from the direction in
which ea is measured increases the magnitude of its conditional covariance with another fixed item. A
demonstration of the results of this theorem most relevant for our purpose can be seen for a different
example set of items in Figure 2. Note that in contrast to Figure 1, the representation for the set of items in
Figure 2 is in the 0,t-space, the latent space orthogonal to the direction in which 0 is measured. The four
items in Figure 2 are measuring three dimensions, but because they are represented in the (%--space, only
two dimensions are needed for the depicted representation. For now we ignore the results of the theorem
related to the sign of the conditional covariance and focus solely on the strictly decreasing association
between Cov(X,, Xi IOa = 6) and /3 provided

Ilai
sin /3 and

a °sin /3

(3)

are held constant. According to the theorem, increasing the angle between any two items in the 0-Ia.-space
corresponds to a decrease in their conditional covariance. Thus, in the example in Figure 2, rotatingal to the
direction of a; results in a decrease in Cov(X1, X3 10 = 0). Likewise, if it were assumed that the lengths of
the vectors representing Items 1, 2, and 3 were all equal, the implied ordering of conditional covariances
from smallest to largest would be

Cov(X,, X2 10 = 0) Cov(X X, 10 = 0) Cov(X,, X, 10 = 0). (4)

BEST COPY AVAILABLE
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3.0

FIGURE 2. Example of item vector representation in
the latent space orthogonal to the direction of best
measurement of all the items

Estimating Conditional Covariances

Fundamental to each of the conditional-covariance-based dimensionality tools mentioned earlier is
accurate estimation of the conditional covariances, in particular, selection of an appropriate subtest score on
which to condition. For both theoretical and practical reasons, the sum score for the remaining items on the
test (excluding the two being examined), or

X
(5)

may be expected to serve as a suitable substitute for By. Using S,i is advantageous both in being easy and
quick to compute and in that, if properly scaled, it approaches 0,, asymptotically as the number of test items
increases. For details on the usual MLE of Cov(Xi, Xi I SO as an estimate of Cov(Xt, Xi I 0,,) see Kim (1994)
and Zhang and Stout (1999).

Measuring the Directional Dissimilarities of Item Pairs

Typically the most informative aspects of item vectors in terms of interpreting test structure are their
directions. One example of this is the use of item vector plots to illustrate the amount of simple structure
present in a test. This can be assessed by examining the degree to which the items "clump" in a small
number of common measurement directions. Figure 3 provides illustrations for two hypothetical tests each
of which is two dimensional, but with the second containing a much greater amount of simple structure than
the first. We sometimes refer to the structure of Figure 3(b) as approximate simple structure.

BEST COPY AVAILABLE
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(a.) A test displaying complete lack of simple structure. (b.) A test displaying approximate simple structure.

FIGURE 3. Item measurement-direction vectors for two hypothetical two-dimensional tests

One way in which measurement direction might be inferred is by examining each item's pattern of
conditional covariances with all of the other items in the test. For example, given the two-dimensional test
displayed in Figure 3(b), it is intuitive that two items whose measurement directions are on the same side of
the measurement direction in which test composite 0,, is measured will have a positive conditional
covariance while two items with measurement directions on opposite sides will have a negative conditional
covariance. Likewise, in a higher dimensional case, item pairs having positive conditional covariances may
be considered to be closer dimensionally than those with negative covariances. (This, in overly simple terms,
is what provides a basis for the DETECT procedure.) Therefore, a pair of items from a common dimensional
cluster should have very similar patterns of conditional covariances with all of the remaining items in the
test. In other words, not only will the item pair itself have a positive conditional covariance, but each item in
the pair should also have conditional covariances of the same sign (positive or negative) with all of the
remaining items.

In terms of the vector projections in the Ol-space (the space orthogonal to the direction in which 0,, is
measured), Zhang's (1996) above-stated theorem suggests that items having common measurement
directions should also have common "orderings" of their conditional covariances with the other items. This
follows from the fact that items having a common direction also have the same angular distances from the
other items. In particular, an item pair measuring the exact same direction in this space should theoretically
have the same ordering of conditional covariances with the remaining items from most positive to most
negative. Also, if the lengths of the vectors (or their discriminating powers) can be factored out, the actual
conditional covariances themselves should be the same (ignoring for now the confounding effects of
differences in item difficulty, which will exist in practice).

Given these results, it may be useful to consider an item's association with all other items in attempting
to reconstruct its direction. For any particular item i, we define a weighted sum of its estimated conditional
covariances with an item j as

Cov (X. , X
'
. = 1:

k

J Cov(Xi , X i IS =
' k=0 (6)

where J denotes the total number of examinees, Jk is the number of examinees obtaining a raw score Sq = k,
and n is the number of test items. Then we denote item i's vector of estimated conditional covariances with
the remaining items on the test as

r
c =rov(X,, X,),Cov(X,, X2)..'.,CoqX,, X ,Cov(X,, X)1

BEST COPY AVAILABLE 11
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Then to compare this vector for a given item i with the correspondingvector for a given item j, we remove
from each of the c, and ci vectors the element representing its conditional covariance with the other item, and
denote the new vector (now of length n 2) ci(i), where the item in parentheses indicates the conditional
covariance term removed. As a result, the elements of co and cm are item i's and j's conditional covariances
with all items other than i and j. From these we can construct a commonly used measure of directional
similarity between the item pair i, j, namely

C1T(11
CM

r..

C. C.
(8)

which is the product-moment correlation of the elements in the two vectors. Based on Zhang's (1996)
theorem, items that measure similar dimensional composites should have large positive, small in magnitude,
and large negative conditional covariances with the same sets of items, and, therefore, have a high value for
r Items that measure the identical dimensional composite should have an ry of approximately 1. Items
measuring very different dimensional composites will have their strongest positive and negative
associations with different sets of items, typically resulting in a negative 7-9 .

As will be seen next, it will be more useful to consider a measure of dissimilarity between items than one
of similarity. Therefore, we compute

=1r
as a measure of the degree to which the items measure different dimensional composites. This index 6
assumes values ranging from 0 (when the items measure the same composite) to 2 (when they measure very
different composites).

(9)

Using MDS to Obtain Orientation of Item Vectors

A useful tool for constructing a representation of psychological stimuli given a proximity matrix such as
) produced above is multidimensional scaling (MDS). In this case the psychological stimuli being scaled

are test items. However, in contrast to the usual MDS approach which attempts to represent dissimilarities
between stimuli as distances between points in a plane or hyperplane, our objective is to translate
dissimilarities between items into substantively interpretable angular distances between item vectors. Thus,
items that have small dissimilarities (implying dimensional closeness) should be close in angular proximity.
Two related forms of constrained MDS, referred to as circular and spherical scaling (see, Cox & Cox, 1991;
Hubert, Arabie, & Meulman 1996), will be used for this purpose. In their usual applications, these methods
arrange stimuli on the surface of a circle or sphere (or hypersphere) so that the dissimilarities are represented
with respect to distances along the arc of a circle (or surface of a sphere). However, such representations can
also in effect be seen as ordering the stimuli so that the differences in their angular directions from the center
of the circle or sphere represent dissimilarity. Items arranged so as to have a short arc length between them,
correspondingly have a small angle between their vectors (projected from the center), while items located far
apart in terms of arc length produce a large angle and, thus, have vectors with very different measurement
directions. Thus, circular and spherical scaling techniques provide a way of using MDS to recover angular
distances between items.

As is the objective of any multidimensional scaling, we can construct a configuration of points whose
interpoint distances clq represent at some level the degree of dissimilarity 6, between the objects being
scaled. For points constrained to lie on a unit m-dimensional hypersphere, ihese dissimilaritiesfind their
representation in the distances between points along the surface of the hypersphere. The resulting spherical
coordinates of a point i in the hyperspherical configuration are given by (1, ri , n2...,n,,,_,i). In this case,
the first element, 1, defines the distance of the point from the origin, while the angle ri, indicates the
direction of the vector (from the origin through the point) away from the axis corresponding to dimension
li + 1. In the two- and three-dimensional cases considered in this paper, these spherical coordinates convert
to Cartesian coordinates as (sin 71,,, cos n) and (sin n sin 77, , cos 77 sin n,,, cost12), respectively. Because
there is a 1-1 increasing relation between distances along the surface of a sphere (or arc of a circle) and the
corresponding Euclidean distances between these points, it is possible to follow the usual MDS procedure of
scaling on hyperplanes provided the resulting points are required to lie on a circle or sphere. Euclidean
distance between two points on the circle reduces to

du = V2(1 cos(I,, 1, .)),
(10)
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while in the spherical case

in
d,, = (2 2sin n2, sin n2i cos(ni, ) 2cos 772, cos

\
.

For a specific MDS configuration, a frequently used measure of how well the resulting distances between
points of the configuration, du represent the given dissimilarities, 6,I, is given by a measure of stress, S
(Kruskal, 1964a, 1964b), computed as

(d.. )2
S= 2

(i, 0

where

Here f provides the "primary" monotone least squares regression of du on 6,i. That is, we minimize

1(d,, )2

(12)

over all choices of monotone / 0 while requiring for all 6,1 < 6k, that d,, 5 dki . A "best" configuration is one
that has minimum stress, with S = 0 indicating perfect fit. This type of scaling solution is considered
nonmetric because the function f can take any monotonic form and, thus, the resulting configuration displays
the dissimilarities at an ordinal level only.

An approach to producing a configuration that minimizes the stress value S using the method of steepest
descent is discussed by Cox and Cox (1991) and implemented in the program MDSCAL-T (Cox & Cox, 1996).
One practical complication with the procedure is that results are often influenced by the presence of local
minima, especially when using poor initial starting configurations. Empirical results suggest that starting
with an initial MDS configuration that first sorts the items into clusters (say based on a cluster analysis) and
then positions the clusters an equal distance from each other on the surface of the sphere may be more
effective in leading to an optimal solution.

An alternative approach that avoids this problem when scaling on a circle is provided by Hubert et al.
(1996). Their method gives emphasis to finding first an optimal ordering of the stimuli on a circle, and then
spacing the stimuli so as to accurately reproduce the dissimilarities using a least squares optimization
strategy. The Hubert et al. approach also differs from the Cox and Cox approach in that it provides a metric
solution, namely one in which the reproduced distances are related linearly to the original dissimilarities,
and, thus, is slightly more restrictive.

Assessing and Representing the Adequacy of the Representation

It has been traditional in multidimensional scaling to focus on stress S as an index of fit in the nonmetric
case and variance accounted for (VAF) in the metric case. Nevertheless, it is perfectly reasonable to apply both
indices in the metric and nonmetric cases. VAF is equal to the proportion of variance in the dissimilarities
accounted for by distances in the final configuration. In the metric case, this is equivalent to the square of the
correlation between the corresponding dissimilarities and distances, or r2(6, d). In the nonmetric case, we
compute it as r2(il, d), assuming that an appropriate rescaling of dissimilarities is that defined by the function
I(recall that i/

I
= ) ). Likewise, in the metric case, a stress value may be computed as

I
S =

CP-

2,

1

where/ is now restricted as the linear transformation that minimizes this expression, and 1 i < n.

13

(13)
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Practically speaking, either of these indices (stress or VAF) permits one to decide if an extra dimension (i.e.,
moving from a circle to a sphere, or sphere to hypersphere) would be useful in improving the representation.

It may also frequently be the case that the resulting representation reproduces a particular item's
dissimilarities with the remaining items more effectively than the representation does forsome other item. In
particular, items that measure in the same direction that 6,, is measured will not have a meaningful
representation in the final configuration. Along these lines, our decision to control for the varying lengths of
the "true" vector projections (indicating their discrimination strength with respect to common secondary
dimensions) by standardizing the ci vectors to construct 6 likewise removes from the representation the
degree to which items measure in the same direction as 0y. We will, however, want to build some notion of
the length of these vectors back into our final representation.

Analogous to the multidimensional logistic model approach, we represent the degree to which items
measure common dimensions orthogonal to the direction in which 0y is measured through the length of the
item vector. The accuracy of the representation for an individual item may be determined using VAF for each
item separately, or VAF; = r2(6 , dii), across all 1 5 j 5 n, j # i. Further, the varying levels of discriminating
power for each item may be most evident in the magnitudes of their conditional covariances with the other
items. Therefore, a value such as the ratio of the mean absolute conditional covariance between item i and
the rest of the items over the mean absolute conditional covariance among all of the items, can provide
information as to the relative discriminating strength of each item in the plane. To allow both of these
elements to influence vector length, we make vector length proportional to the product of VAF; and this
ratio. It is important to note that our notion of discrimination as captured by vector length in this
representation is, therefore, different from that defined earlier. In particular, in addition to the usual
discrimination of the items, it is also dependent both on the relative angular distance of the item from 0,,, as
well as where the other items lie in the representation (i.e., whether it lies in a "clump" of items measuringa
common secondary dimension).

Analysis of Simulated Data

To examine whether the scaling procedure is useful in recovering multidimensional test structure, data
were simulated for several hypothetical multidimensional tests using Reckase's multidimensional extension
of the two-parameter logistic model. Unless otherwise specified, for each of the cases below, 3,000 examinees
were simulated from a multivariate normal ability distribution

(u = /42 = =µk =0, al =a2=...= =1) (14)

with a correlation of .5 between each pair of k dimensions. In each of the two 2-dimensional cases and in
each of the four 3-dimensional cases, two-part figures are provided to compare the simulated test structure
with the estimated test structure from the MDS results. The test structure used to simulate data is
represented in 9 -space in accordance with Reckase's multidimensional logistic representation, and the
estimated test structure is represented by the resulting scaling configuration, which corresponds to 0-;,-space.
Both difficulty di and discrimination were varied for all items with d, N(0, .75) and

D 2

k =laik N(1,

where D is the number of dimensions.

Two-Dimensional Case

(15)

In the two-dimensional case, a 0;,-space representation (which is unidimensional because dim(0) =
dim(model) 1) should theoretically position all of the items in only one of two directions, depending on
which of the two dimensions the item more predominantly measures. The first example considered is the
simple structure case in which all items are "pure" measures of either Dimension 1 or Dimension 2. Figure
4(a) displays a case in which an equal number of items was used to measure each dimension. Also apparent
is the variability in difficulty and discrimination among items measuring each dimension. Using the circular
scaling technique (Hubert et a1.,1996) combined with our approach for reproducing vector lengths, the
reproduced structure is shown in Figure 4(b). The VAF value of .995 indicates a good recovery of the
computed angular dissimilarity among items. Recovery of the actual angular differences is further
supported by the fact that each of the sets of items measuring a common dimension in Figure 4(a) is oriented
in a common direction in Figure 4(b). Thus, the scaling technique effectively sorted the items into their
appropriate clusters.
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(a.) Simulated dimensionality structure in 0-space. (b.) Estimated dimensionality structure in O space.

FIGURE 4. Comparison of simulated and estimated dimensionality structures. Two-dimensional simple
structure. Equal number of items per dimension

In some cases, it may be that there exist items that are in themselves pure measures of 0 Figure 5(a)
illustrates a structure similar to that in Figure 4(a), but with a cluster of six items thatmeasure

0, +02

2 (16)

which is approximately in the same direction in which is measured. As a result there exist a total of three
clusters of items, although the test itself is still two-dimensional. Because performance on the items
measuring

01 +02

2

is predominantly determined only by (i.e., not by 010/ their estimated conditional covariances with the
other items will be very close to 0 and the projections of their vectors on the 01y plane will be small. Thus,
there should not be any meaningful association between these items and the others in the 01y-space. Figure
5(b) provides the results. Again items that were pure measures of either of the two dimensions are correctly
sorted so as to point in different directions. The VAF in this representation of .844 is slightly lower than in the
previous case, due to the "noise" contributed by items measuring only 0y. Each of these pure 0,, items is
represented by a vector having almost zero length. As will always be the case in this type of representation,
the vectors suggest which dimensions other than 0,, are measured by the individual test items.

15
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(a.) Simulated dimensionality structure in 0-space. (b.) Estimated dimensionality structure in 0; space.

FIGURE 5. Comparison of simulated and estimated dimensionality structures. Two-dimensional simple
+ 612structure. Items partitioned equally between measuring 0 02, and
2

It should be mentioned that the presence or absence of a simple structure is not detectable in the
9Y -space for the two-dimensional case. Instead, vector length captures the varying degree to which an item
measures a dimension other than 9,,. As a result, in the strictly two-dimensional case, it should always be
the case (approximately at least) that each of the vectors of non-zero length points in just one of two
directions. In this sense, our use of circular scaling in the two-dimensional case actually places the
representation in a higher dimensional space than is necessary. Equivalent representations to those in
Figures 4(b) and 5(b) can be obtained using a unidimensional scaling representation.

Three-Dimensional Case

The three-dimensional case permits a more thorough investigation of the flexibility of our scaling
methodology. Specifically, the capacity to examine conditions of simple structure versus lack of simple
structure and to examine varying levels of association between dimensionally distinct item clusters requires
at least three dimensions.

Figure 6(a) illustrates the three-dimensional simple structure case analogous to the two-dimensional
structure in Figure 4(a). For clarity, the items in each cluster are represented by the same type of arrowhead
(closed & shaded, closed & unshaded, open). This three-dimensional representation of the multidimensional
logistic model is a direct extension of the two-dimensional case, with the length of the vector now
proportional to

Ia 2 + a 2 + a2

2 3 (17)

and the orientation of the vector again defined by the direction of maximum information. In this case,
different arrowheads define items from the different dimensional clusters. Figure 6(b) shows the result based
on applying the scaling procedure. Again the VAF is quite high (.993). The length of the vectors, although
associated with the discriminating power of the item (r = .43), are also heavily influenced by the item
difficulty. This is not surprising given the known effect of differences in difficulty on the conditional
covariance. Nevertheless, difficulty appears to have little effect on the vector directions at least when there is
not a strong association between difficulty and dimensionality.

16 BEST COPY AVAILABLE
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(a.) Simulated dimensionality structure in 0-space. (b.) Estimated dimensionality structure in tn. space.

FIGURE 6. Comparison of simulated and estimated dimensionality structures. Three-dimensional simple
structure. Equal number of items per dimension. Equal correlations between the dimensions

Figures 7, 8, and 9 display alternative three-dimensional structures. In Figure 7(a), the correlation
between dimensions is varied so that Dimensions 1 and 2 are correlated .7, while the other pairs remain
correlated .5. Note that the resulting configuration in Figure 7(b) (VAF = .978) correctly orients the two more
highly associated clusters closer together, while keeping their relative distances from the third cluster equal.
Thus, it appears that an interpretation of the similarity of clusters may be possible using the scaling approach.

(a.) Simulated dimensionality structure in 0-space. (b.) Estimated dimensionality structure in 0t, space.

FIGURE 7. Comparison of simulated and estimated dimensionality structures. Three-dimensional simple
structure. Equal number of items per dimension. Correlation of 0.7 between 0, and 02 while the other
correlations are 0.5

BEST COPY AVAILABLE 17
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In Figure 8(a), the number of items in each cluster has been varied so that there are 5, 10, and 15 items
measuring each of the respective dimensions. This appears to have only a small effect on the resulting
configuration in Figure 8(b) (VAF = .958). Again all items are correctly sorted into their respective clusters,
but this time the clusters themselves are oriented so as to indicate a slightly larger difference between the
two larger-sized clusters.

(a.) Simulated dimensionality structure in 0-space. (b.) Estimated dimensionality structure in O space.

FIGURE 8. Comparison of simulated and estimated dimensionality structures. Three-dimensional simple
structure. Five items measuring 01, 10 measuring 02, and 15 measuring 03. Equal correlations between
the dimensions

In Figure 9(a), a three-dimensional test totally lacking simple structure is represented. In this case there
are a total of 30 items, with each item measuring a composite of two dimensions. For each pair of dimensions
there are 10 items spread equally in 10-degree increments, producing a fan-like representation (similar to
that in Figure 3[a]) within each two-dimensional plane. Although item discrimination and difficulty were
varied in the simulation, vector lengths are drawn here as equal to simplify the representation. As desired, in
Figure 9(b) the resulting configuration (VAF = .950) emphasizes the lack of simple structure and orients each
set of vectors measuring a different two-dimensional composite in a different 120-degree region. Thus,
unlike DETECT, our procedure seems to produce interpretable results in cases where there is a complete lack
of simple structure.

BEST COPY AVAILABLE
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(a.) Simulated dimensionality structure in 0- space. (b.) Estimated dimensionality structure in (4 space.

FIGURE 9. Comparison of simulated and estimated dimensionality structures. Three dimensions with
complete lack of simple structure. All dimensions equally well measured. Equal correlations between
the dimensions

Four-Dimensional Case

For tests that are four-dimensional, a more appropriate representation will likely be obtained in a
three-dimensional space using the spherical scaling approach. Table 1 displays the four-dimensional
discrimination parameter vectors for a test comprised of 48 items. For this test, some degree of simple
structure is present, although there are a variety of different dimensional composites being measured. The
scaling solution provided in Table 2 corresponds to a stress value of .025, and appears to effectively represent
the original structure. Note that in this solution spherical coordinates are defined with respect to two angles,
the first, denoted rl, , being the orientation of the vector with respect to the X-axis in the XY plane (measured
in degrees) and the second, denoted qv being the orientation of the vector with respect to the Z-axis (or
vertical axis). Items having a common dimensional structure are oriented in common directions. This can be
seen, for example, in the subsets of items that are pure measures of each of the four dimensions (item groups
11-6), (13 -181, 125 -30), (37-481), where each subset points in a different direction, and all items within each
subset point in a common direction. Further, items that are composites of these dimensions typically have
directions located in between the directions of these respective subsets. For example, Item 10, which is
largely a composite of Dimensions three and four, is directed to a location equidistant from item cluster 11-6)
and item cluster 125-30), which measure, respectively, Dimensions three and four.
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TABLE 1
Item discrimination and difficulty level usedfor the simulated four-dimensional data
Item al a2 a, a4 d

1 0.00 0.00 0.00 1.00 -1.24
2 0.00 0.00 0.00 1.00 0.35
3 0.00 0.00 0.00 1.00 -0.26
4 0.00 0.00 0.00 1.00 -1.67
5 0.00 0.00 0.00 1.00 -0.23
6 0.00 0.00 0.00 1.00 1.74
7 0.00 0.00 0.50 0.87 1.55
8 0.00 0.00 0.50 0.87 -0.99
9 0.00 0.00 0.50 0.87 -0.67

10 0.00 0.38 0.66 0.64 1.75
11 0.27 0.27 0.66 0.64 -0.53
12 0.38 0.00 0.66 0.64 0.45
13 0.00 1.00 0.00 0.00 -0.05
14 0.00 1.00 0.00 0.00 0.44
15 0.00 1.00 0.00 0.00 1.28
16 0.00 1.00 0.00 0.00 -2.13
17 0.00 1.00 0.00 0.00 -1.22
18 0.00 1.00 0.00 0.00 -0.46
19 0.00 0.87 0.00 0.50 -1.34
20 0.00 0.87 0.00 0.50 0.63
21 0.00 0.87 0.00 0.50 0.81
22 0.00 0.64 0.38 0.66 0.62
23 0.27 0.64 0.27 0.66 -0.05
24 0.38 0.64 0.00 0.66 -1.44
25 0.00 0.00 1.00 0.00 -1.59
26 0.00 0.00 1.00 0.00 1.47
27 0.00 0.00 1.00 0.00 -0.37
28 0.00 0.00 1.00 0.00 0.39
29 0.00 0.00 1.00 0.00 -2.13
30 0.00 0.00 1.00 0.00 0.95
31 0.00 0.50 0.87 0.00 -0.46
32 0.00 0.50 0.87 0.00 -2.07
33 0.00 0.50 0.87 0.00 1.33
34 0.00 0.66 0.64 0.38 -1.03
35 0.27 0.66 0.64 0.27 0.51
36 0.38 0.66 0.64 0.00 -0.47
37 1.00 0.00 0.00 0.00 -0.45
38 1.00 0.00 0.00 0.00 1.06
39 1.00 0.00 0.00 0.00 0.34
40 1.00 0.00 0.00 0.00 1.23
41 1.00 0.00 0.00 0.00 0.35
42 1.00 0.00 0.00 0.00 1.52
43 1.00 0.00 0.00 0.00 -0.44
44 1.00 0.00 0.00 0.00 0.38
45 1.00 0.00 0.00 0.00 -0.25
46 1.00 0.00 0.00 0.00 -0.94
47 1.00 0.00 0.00 0.00 1.73
48 1.00 0.00 0.00 0.00 1.11
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TABLE 2
Estimated item measurement directions in 091y-space from the MDS
solution for the four-dimensional simulated data
Item 11 112

1 -55 142
2 -53 122
3 -37 134
4 -50 123
5 -51 136
6 -41 124
7 33 118
8 27 121
9 35 131

10 27 101
11 53 113
12 87 106
13 -80 81
14 -75 80
15 -79 76
16 -77 84
17 -70 77
18 -82 75
19 -69 90
20 -72 91
21 -75 92
22 -46 102
23 -64 104
24 -84 99
25 75 84
26 77 85
27 73 85
28 74 84
29 73 82
30 76 84
31 65 79
32 68 77
33 63 82
34 16 85
35 53 70
36 81 51
37 6 -71
38 13 -90
39 12 -80
40 9 -83
41 12 -79
42 6 -81
43 12 -82
44 11 -76
45 5 -76
46 2 -83
47 9 -79
48 10 -83

With nonmetric MDS, it is typically useful to refer to a Shepard plot (Shepard, 1962), which both
represents the function f, as well as a plot of the d, s versus the os. Figure 10 displays this plot for the
simulated data and solution shown in Table 2. Note the closeness of the plotted points to the line
representing f, indicating a good representation of the original dissimilarities in the solution. Also, the
nature off suggests that the angular distances in the final representation can be interpreted as almost linear
with respect to the dissimilarities.
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FIGURE 10. Shepard diagram corresponding to
the MDS solution for the four-dimensional
simulated data

Analysis of Real Data

Previous analyses of the Law School Admission Test (LSAT) suggest that the forms can be considered to
be predominantly measured by two correlated dimensions, one measured by items in an analytical
reasoning (AR) section and the other measured collectively by reading comprehension (RC) and logical
reasoning (LR) section items (Camilli, Wang, & Fesq, 1995; De Champlain, 1995, 1996; Douglas, Kim,
Roussos, Stout & Zhang, 1999; Stout, et al. 1996; Wilson & Powers, 1994). Separate dimensionality analyses of
the AR and RC sections further suggest that these two sections each have passage-based structures; that is,
items based on a common reading passage tend to be more dimensionally similar than those based on different
passages (Camilli, Wang, & Fesq, 1995; Douglas, et al. 1999; Stout, et al. 1996) In an attempt to replicate these
findings, separate analyses were performed for each of the AR and RC sections. Because each of the sections
is based on 4 passages, it was anticipated that a three-dimensional representation using the spherical scaling
approach would be most appropriate, recalling that we expect, in general, to need D 1 dimensions in our
representation if D equals the number of dominant dimensions.

Results for the AR section (the same data examined by Stout et al.) using the spherical scaling procedure
are shown in Table 3. For purposes of clarity, only the angles for each item are presented rather than the
actual vector representation. In this case, the items from the four item sets separate very cleanly into four
clusters (Items 1-7,8-13,14-19, and 20-24), equally spaced in terms of angular distance. In fact, the
directions for items from common clusters are nearly identical in all cases. What makes this possible is the
very unrestrictive nature of the function f linking the 6 s to the d us. These results are in complete agreement
with the HCA/CCPROX and DETECT analyses reported in Stout et al.
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TABLE 3
Estimated item measurement directions in 0y-space from the MDS
solution for the analytical reasoning test data
Item ri,

712

1 131 0

2 122 0
3 119 0
4 124 0
5 119 0
6 120 0
7 129 0
8 147 111
9 147 111

10 147 111
11 147 111
12 147 111
13 147 111
14 27 110
15 27 110
16 27 110
17 27 110
18 27 110
19 27 110
20 268 110
21 268 110
22 268 110
23 268 110
24 268 110

Perhaps the most interesting results occurred in the analysis of the RC section. This test also consists of
items based on 4 passages, and so was also analyzed using the spherical approach, with results shown in
Table 4. Previous analyses of this RC section using HCA/CCPROX and DETECT had yielded conflicting
results (Stout et al.). The four-cluster solution from the HCA/CCPROX analysis divided the section into four
clusters with each corresponding to exactly one of the four item sets that went with the four passages. The
DETECT analysis, on the other hand, suggested a three-cluster solution. Two of the DETECT clusters
corresponded to two separate item sets, but the third cluster was the union of the items corresponding to the
two remaining item sets. As shown in Table 4, the current results indicate a four-cluster solution in
agreement with the previous HCA/CCPROX analysis. Furthermore, the new information yielded by the
current analysis offers a compelling explanation for the difference in the two previous analyses results. The
current analysis indicates that two of the clusters, Items 1 to 7 and Items 8 to 15, though dimensionally
distinct in terms of measurement direction, are much closer together than any other pair of clusters. The near
proximity of those two clusters to each other made it difficult for DETECT to tell the difference between
them. Unlike cluster analysis and MDS, which rely only on ordinal information, the DETECT analysis relies
on accurate measurement of the signs of the conditional covariances. Because the conditional covariance
estimator used in these techniques may be statistically biased, DETECT may sometimes have difficulty
distinguishing clusters that are very close together. Because HCA and MDS rely on only ordinal information,
any statistical bias in the estimators of the conditional covariances does not adversely affect these procedures
and they remain effective in distinguishing such clusters. The substantive reason as to why these two
clusters were close together can be readily found in that the two passages corresponding to these clusters are
both "science-based." This finding further lends support to the capability of the circular/spherical scaling
approach to represent varying degrees of associations between item clusters.
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TABLE 4
Estimated item measurement directions in 0;,-space from the MDS
solution for the reading comprehension test data
Item 11 liz

1 145 66
2 157 73
3 140 74
4 153 71
5 153 64
6 151 79
7 144 74
8 216 74
9 213 80

10 210 72
11 215 82
12 214 79
13 211 83
14 210 79
15 219 83
16 331 5
17 346 7
18 310 20
19 35 17
20 346 12
21 6 130
22 0 131
23 6 124
24 0 130
25 359 125
26 9 124
27 8 132
28 8 133

It is perhaps best to interpret the AR and RC results with respect to the estimated function.? associating
the dissimilarities to the distances. Figures 11 and 12 provide Shepard plots for the AR and RC analyses,
respectively. Note that in the AR representation there are only two different potential distances, so that for
every item from a common cluster, although varying in their actual dissimilarities, the distance is 0, while
every item pair from different clusters has a distance of approximately 1.75. Because in this case item pairs
from common clusters had 6 s below the minimum for item pairs from different clusters, the fit is also
perfect, resulting in a VAF =1.0 and stress = 0.00. Again, it should be recalled that the representations
obtained preserve the ordinal associations between items with respect to the 6,i s. Therefore, in this case we
limit our interpretation to the observation that items fromcommon passages are more highly associated than
items from different passages. We cannot assess from this Shepard diagram the relative associations between
the passage-based clusters.
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FIGURE 11. Shepard diagram corresponding
to the MDS solution for the analytical
reasoning test data

FIGURE 12. Shepard diagram corresponding
to the MDS solution for the reading
comprehension test data

In the reading comprehension case, there is some variability of points about the f line suggesting that fit
is not perfect, but still quite adequate (VAF = .962, stress = .032). Also, in contrast to the AR case, there are a
variety of different distances represented. Note in particular the group of item pair points having distances
of approximately 1.0. These represent the items from the two clusters corresponding to the two science-based
reading passages. These two clusters had a closer association than the other clusters.

Conclusion

The results of this preliminary study suggest that inter-item conditional covariances may provide a
useful basis for constructing a meaningful item-level test geometry. Compared to other proximity measures
developed for the purpose of dimensionality assessment (see Roussos, Stout, & Marden, 1998), the
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dissimilarity index used in this paper is unique in its use of patterns of conditional covariances with the
other items in the test. The purpose of this is to control for the length of vector projections in the 9Y -space
and build an index that is only sensitive to dissimilarity in vector direction. Future study will be needed to
provide a more careful investigation of the properties of this dissimilarity index and its relationship to the
measures proposed by Roussos, et al. (1998). More specifically, the use of the index proposed here in the
context of HCA (either by itself or in conjunction with DIMTEST) should be investigated.

More investigation is also needed into the nature of the association between the index and the true angle
between items in the Ot,-space. Because other factors besides this angle may contribute to the dissimilarity
index, it is important to gain a more thorough interpretation of the reproduced angles (i.e., the item
geometry) in light of the index used. Further, a more precise understanding of the effects of difficulty on
conditional covariances and how to best control for it in constructing the representation would be warranted.

As used in this paper, circular and spherical MDS procedures seemingly provide within MDS a step in
the direction of providing a factor-analytic type of representation of test structure. It may be possible within
this context to make more meaningful comparisons between these two classes of dimensionality-reduction
techniques, which have historically been considered quite disparate. One advantage to the use of MDS is the
wide variety of possible dissimilarity indices with which it can be used. It may be useful to examine the
performance of this scaling method with others that are also sensitive to the dimensional structure of the items.

Finally it will be important to link this approach with the other nonparametric dimensionality tools
mentioned earlier. To the extent that all are conditional covariance based, it might be expected that they
perform similarly in their descriptions of test structure. As demonstrated in this paper, one advantageous
feature of the scaling approach relative to HCA and DETECT is its capacity to represent varying levels of
association among clusters. Moreover, these other tools can also serve as an aid in constructing a
scaling-based representation. For example, HCA/CCPROX and DETECT can help define the dimensionality
of the space in which a representation is most appropriate.
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